SIEMENS

2-port valves VVP47.10-0.25 to VVP47.20-4.0 VXP47.10-0.25 to VXVP47.20-4.0

3-port valves

3-port valves with T-bypass VMP47.10-0.25 to VMP47.15-2.5

2-Port and 3-Port **Terminal Unit Valves PN16**

VVP47... VXP47... VMP47...

- Bronze valve body CC491K (Rg5)
- DN10, DN15 and DN20
- k_{vs} 0.25...4 m³/h
- Flat-sealing connections with external thread G...B to ISO 228/1 for:
 - ALG... screwed fittings (threaded connection) available from Siemens
 - SERTO SO21... compression fittings (any specialist supplier)
- Screwed fittings for solder connections (any specialist supplier)
- Manual adjuster
- Can be combined with SSP... or SFP... motoric actuators or STP... thermal actuators

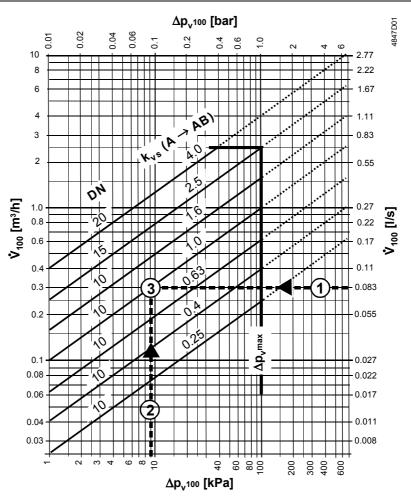
Use

- For use in ventilation and air conditioning systems for water-side terminal unit control in closed circuits, e.g. for induction units, fan coil units, small reheaters and small recoolers.
 - 2-pipe systems with 1 heat exchanger for heating and cooling
 - 4-pipe systems with 2 separate heat exchangers for heating and cooling
- In closed-circuit zone heating systems, e.g. for:
 - Separate floors in a building
 - Apartments
 - Individual rooms
- The VXP47... 3-port valves together with SFP... actuators are specially suited for changeover applications where small leakage rates are required.

CA1N4847en 22.12.2003

		VVP47	VXP47	VMP47	DN	k vs	k vs ¹⁾	$\Delta p_{vmax}^{2)}$	
		2-port	3-port	3-port	_	$A \rightarrow AB$	$B \rightarrow AB$		
				with T-bypass	4.0	[m ³ /h]	[m ³ /h]	[kPa]	
		VVP47.10-0.25	VXP47.10-0.25	VMP47.10-0.25	10	0.25	0.18	100	
		VVP47.10-0.4	VXP47.10-0.4	VMP47.10-0.4		0.40	0.28		
		VVP47.10-0.63	VXP47.10-0.63	VMP47.10-0.63		0.63	0.44		
		VVP47.10-1	VXP47.10-1	VMP47.10-1		1.00	0.70		
		VVP47.10-1.6	VXP47.10-1.6	VMP47.10-1.6		1.60	1.12		
		VVP47.15-2.5	VXP47.15-2.5	VMP47.15-2.5	15	2.50	1.75		
		VVP47.20-4	VXP47.20-4		20	4.00	2.80	40	
Accessories Ordering	Example	k_{vs} = nomina differen Δp_{vmax} = maximu the con Screwed fitting When ordering quantity of ALC and the SSP 1 3-port value	al flow rate of cold on initial pressure of 10 um admissible pre- instruction) valid for gs: Refer to «Din g, please give th G screwed fitt ., SFP and S	ssure differential ac the entire stroke ra mensions». le quantity, prod tings required, if TP actuators i type VMP47.10	rough th cross the ange luct nar any. T must be	ne fully open e control path me and typ he ALG; e ordered a	ed valve (H h of the valv be reference screwed fi	₁₀₀) at a e (dependir ce, plus th ttings (Sie	ng on
Delivery		The valves, ac	tuators and scr	ewed fittings are	e packe	ed separate	ely.		

Equipment combinations


Valves	SSP motoric actuators			notoric ators	STP thermal actuators		
	∆p _{max} [kPa]	∆p _s [kPa]	∆p _{max} [kPa]	∆p _s [kPa]	∆p _{max} [kPa]	∆p₅ [kPa]	
VVP47.10-0.251.6	100	100	100	100	100	100	
VVP47.15-2.5							
VVP47.20-4	40	40	40	40	40	40	
VXP47.10-0.251.6	100		100		100		
VXP47.15-2.5							
VXP47.20-4	40		40		40		
VMP47.10-0.251.6	100		100		100		
VMP47.15-2.5							
Data Sheet	4864		48	65	4878		

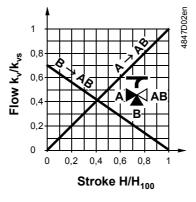
 Δp_{max} = maximum admissible pressure differential across the control path of the valve for the entire actuating range of the motorized valve

 Δp_s = maximum admissible pressure differential (closing pressure) at which the motorized valve will close reliably against the pressure

Overview of actuators

Actuator	Type of actuator	Operating voltage	Positioning signal	Positioning time	Positioning force	•
SSP31	Motoric	AC 230 V	3-position	150 s	100 N	•
SSP81		AC 24 V				•
SSP81.04				43 s		•
SSP61		AC/DC 24 V	DC 010 V	34 s		•
SFP21/18		AC 230 V	2-position	3050 s	105 N	.
SFP81/18		AC 24 V				
STP21	Thermal	AC 230 V		180 s		
STP71		AC 24 V				

Example:


- **1** \dot{V}_{100} = 0.0 83 l/s
- **2** $\Delta p_{v100} = 9 \, \text{kPa}$
- 3 k_{vs} value = 1.0 m³/h

 $\Delta p_{v^{100}}$ = pressure differential across the fully open valve and control path A \rightarrow AB at a flow rate of \dot{V}_{100}

- \dot{V}_{100} = flow rate across the fully open valve (H₁₀₀)
- Δp_{vmax} = maximum admissible pressure differential across the control path of the valve (depending on the construction) valid for the entire stroke range
- 100 kPa = 1 bar \approx 10 mWG

 $1 \text{ m}^{3}/\text{h} = 0.278 \text{ l/s water at } 20 \text{ }^{\circ}\text{C}$

Valve characteristics

With valve types VXP47.../VMP47..., the k_{vs} values in bypass B represent only 70 % of the k_{vs} value in the straight-through control path, A \rightarrow AB. This compensates for the flow resistance of the heat exchanger or radiator, so keeping the overall flow rate, \dot{V}_{100} as constant as possible.

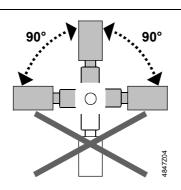
Mechanical design

- · Combined disc / plug flow restrictor
- Seat ring embedded in through-port A → AB
- Seat machined into bypass $B \rightarrow AB$.
- Continuously lubricated sealing rings
- Conical return springs, for more compact valve construction

Also refer to «Mounting» and «Commissioning».

The valves should preferably be installed in the return, where the stem seal will be exposed to lower temperatures.

Recommendation: A strainer should be fitted upstream of the valve. This increases reliability.

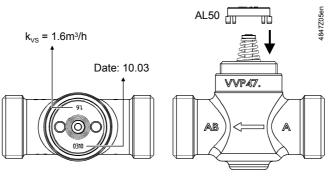

Valve construction	Valve series	Valve	flow in control	mode	Valve stem		
		Inlet A	Inlet B	Outlet AB	Retracted	Extended	
2-port valves	A AB	Variable		Variable	A ──→ AB Valve opens	A → AB Valve closes	
3-port valves	VXP47 A A AB B	Variable	Variable	Constant	A → AB Valve opens → AB B Valve closes	A → AB Valve closes → AB B Valve opens	
3-port valves with T-bypass	VMP47	Variable	Variable	Constant	A → AB Valve opens → AB B Valve closes	A → AB Valve closes → AB B Valve opens	

Warning

The direction of flow MUST be as indicated by the arrow, i.e. only from A \rightarrow AB and B \rightarrow AB. The 3-port valve types VXP47... and VMP47... may only be used in mixing applications.

Mounting notes

Orientation



The specified direction of flow must be observed in all cases (also refer to «Engineering notes»).

The valves are delivered in a multipack. Mounting Instructions 74 319 0301 0 are enclosed with the packaging.

The valve and actuator can be easily assembled on site. There is no need for special tools or calibration.

AL50 supporting ring The AL50 supporting ring must be put into position before mounting the actuator onto the valve.

Commissioning

Manual adjustmentThe straight-through control path $A \rightarrow AB$ can be opened either electrically via the
actuator, or by adjustment with the manual button. In the case of 3-port valves, this
throttles or closes bypass B.

Warning A Before performing any service work on the valve and / or actuator: Switch OFF the pump and power supply, close the main shutoff valve in the pipework, release pressure in the pipes and allow them to cool down completely. If necessary, disconnect electrical connections from terminals. The valve may be commissioned only with the manual adjuster preset or with a correctly mounted actuator.

Disposal

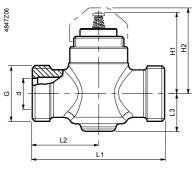
The valve must be dismantled and separated into its various constituent materials before disposal.

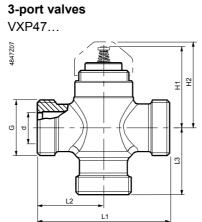
Warranty

The technical data supplied for these valves is valid only for valves used in conjunction with the actuators listed under «Equipment combinations».

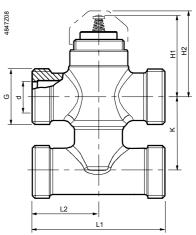
Use with third-party actuators invalidates any warranty offered by Siemens Building Technologies / HVAC Products.

Technical data


Operating data	Pressure class	PN16 to EN 1333			
	Valve characteristic				
	Path A \rightarrow AB	linear			
	Bypass $B \rightarrow AB$	linear			
	Leakage	to DIN EN 1349			
	Path A \rightarrow AB	00.05 % of k _{vs}			
	Bypass $B \rightarrow AB$	00.05 % of k _{vs}			
	Suitable media	chilled water, low-temperature hot water and water			
		with frost protection additives			
		recommendation: water should be treated as			
		specified in VDI 2035			
	Temperature of medium	1110 °C, or max. 120 °C for short periods			
	Rangeability S _v	> 50 as in VDI 2173			
	Admissible operating pressure	1600 kPa (16 bar)			
	Nominal stroke	2.5 mm			
Materials	Valve body	bronze CC491K (Rg5)			
	Stem	stainless steel			
	Plug, seat ring, gland	brass			
	Stem seal	EPDM O-rings			
Dimensions / weight	Dimensions	refer to «Dimensions»			
	Threaded connections				
	Valve	G…B (inches) to ISO 228/1			
	Screwed fitting	R/Rp to ISO 7/1, G to ISO 228/1			
	Actuator connection	M30 x 1.5			
	Weight	refer to «Dimensions»			
Accessories	ALG screwed fittings	nut, nipple and flat seal for steel pipes			
	(supplier: Siemens)	with gas pipe threads			
	SERTO SO 21 compression fitting	nut and compression fitting for seamless copper and			
	(obtainable from suppliers to the trade)	mild-steel piping			
	Solder fittings	for copper and steel pipes			
	(obtainable from suppliers to the trade)				


= nominal flow rate of chilled water (5...30 °C) through the fully opened valve (H₁₀₀) at a differential pressure of 100kPa (1bar).

= the lowest value for k_v at which the characteristic tolerance is still maintained, at a differential k_{vr} pressure of 100kPa (1 bar)


2-port valves

VVP47...

3-port valves with T bypass VMP47...

•	Valve type	DN	G	d	H1	H2	L1	L2	L3	Weight
			[ins]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
AB	VVP47.10-0.25 1.6	10	G½B	10.5	46	≈ 49	60	30	19	0.32
	VVP47.15-2.5	15	G¾B	14	46	≈ 49	65	32.5	19	0.34
	VVP47.20-4	20	G1B	20	49	≈ 52	80	40	23	0.44

АВВ

alve type	DN	G	d	H1	H2	L1	L2	L3	Weight
		[ins]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
XP47.10-0.25 1.6	10	G½B	10.5	46	≈ 49	60	30	30	0.32
XP47.15-2.5	15	G¾B	14	46	≈ 49	65	32.5	32.5	0.37
XP47.20-4	20	G1B	20	49	≈ 52	80	40	40	0.5
))	KP47.10-0.25 1.6 KP47.15-2.5	KP47.10-0.25 1.6 10 KP47.15-2.5 15	[ins] KP47.10-0.25 1.6 10 G½B KP47.15-2.5 15 G¾B	[ins] [mm] (P47.10-0.25 1.6 10 G½B 10.5 (P47.15-2.5 15 G¾B 14	[ins] [mm] [mm] KP47.10-0.25 1.6 10 G½B 10.5 46 KP47.15-2.5 15 G¾B 14 46	[ins] [mm] [mm] [mm] KP47.10-0.25 1.6 10 $G^{1}/_{2}B$ 10.5 46 ≈ 49 KP47.15-2.5 15 $G^{3}/_{4}B$ 14 46 ≈ 49	[ins] [mm] [mm] [mm] [mm] KP47.10-0.25 1.6 10 G½B 10.5 46 ≈ 49 60 KP47.15-2.5 15 G¾B 14 46 ≈ 49 65	[ins] [mm] [m] [mm] [mm] <t< th=""><th>[ins][mm][mm][mm][mm][mm][mm](P47.10-0.25 1.610$G^{1}_{2}B$10.546$\approx 49$603030(P47.15-2.515$G^{3}_{4}B$1446$\approx 49$6532.532.5</th></t<>	[ins][mm][mm][mm][mm][mm][mm] (P47.10-0.25 1.6 10 $G^{1}_{2}B$ 10.546 ≈ 49 603030 (P47.15-2.5 15 $G^{3}_{4}B$ 1446 ≈ 49 6532.532.5

d

[mm]

10.5

14

H1

[mm]

46

46

1847Z

H2

[mm]

≈ 49

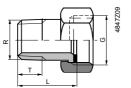
≈ 49

Κ

[mm]

40

40


|--|

Screwed fittings

•	Valve type	DN
AB	VMP47.10-0.25 1.6	10
	VMP47.15-2.5	15

Flat-sealing screwed fittings

ALG13 and 14 with external thread

Compression fittings SERTO SO 21...

L1

[mm]

60

65

L2

[mm]

30

32.5

Weight

[kg]

0.4

0.48

For valve type	DN	G	ALG ¹⁾	R	Rp	L	Т	SERTO SO 21 ²⁾	D
		[in]	(Siemens)	[in]	[in]	[mm]	[mm]	(from specialist supplier)	[mm]
VVP47.10-0.25 1.6	10	G1⁄2	ALG13	R ³ /8		≈ 24	≈ 9	SO 21-12-1/2"	12
VXP47.10-0.25 1.6								SO 21-14-1/2"	14
VMP47.10-0.25 1.6								SO 21-15-1/2"	15
VVP47.15-2.5	15	G¾	ALG14	R½		≈ 29.5	≈ 12	SO 21-17-3/4"	17
VXP47.15-2.5								SO 21-18-3/4"	18
VMP47.15-2.5									
VVP47.20-4	20	G1	ALG15		Rp½	≈ 23	≈ 13		
VXP47.20-4									

G

[ins]

G½B

G¾B

with internal thread

ALG15

¹⁾ Type ALG... screwed fittings and flat seal available from Siemens

²⁾ SERTO SO21... compression fittings, obtainable from specialist supplier

DN = nominal bore

- G = valve thread (internal, cylindrical)
- D = external diameter for seamless copper and mild-steel piping

© 2003 Siemens Building Technologies Ltd.

Subject to change